3.1.58 \(\int \frac {x^3}{\sqrt {a x+b x^3}} \, dx\) [58]

3.1.58.1 Optimal result
3.1.58.2 Mathematica [C] (verified)
3.1.58.3 Rubi [A] (verified)
3.1.58.4 Maple [A] (verified)
3.1.58.5 Fricas [C] (verification not implemented)
3.1.58.6 Sympy [F]
3.1.58.7 Maxima [F]
3.1.58.8 Giac [F]
3.1.58.9 Mupad [F(-1)]

3.1.58.1 Optimal result

Integrand size = 17, antiderivative size = 258 \[ \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx=-\frac {6 a x \left (a+b x^2\right )}{5 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}+\frac {2 x \sqrt {a x+b x^3}}{5 b}+\frac {6 a^{5/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a x+b x^3}}-\frac {3 a^{5/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a x+b x^3}} \]

output
-6/5*a*x*(b*x^2+a)/b^(3/2)/(a^(1/2)+x*b^(1/2))/(b*x^3+a*x)^(1/2)+2/5*x*(b* 
x^3+a*x)^(1/2)/b+6/5*a^(5/4)*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1 
/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)* 
x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^( 
1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^3+a*x)^(1/2)-3/5*a^(5/4)*(cos(2*arct 
an(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4) 
))*EllipticF(sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+ 
x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^3+ 
a*x)^(1/2)
 
3.1.58.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.26 \[ \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx=\frac {2 x^2 \left (a+b x^2-a \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {b x^2}{a}\right )\right )}{5 b \sqrt {x \left (a+b x^2\right )}} \]

input
Integrate[x^3/Sqrt[a*x + b*x^3],x]
 
output
(2*x^2*(a + b*x^2 - a*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, 
 -((b*x^2)/a)]))/(5*b*Sqrt[x*(a + b*x^2)])
 
3.1.58.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.06, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.412, Rules used = {1930, 1938, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx\)

\(\Big \downarrow \) 1930

\(\displaystyle \frac {2 x \sqrt {a x+b x^3}}{5 b}-\frac {3 a \int \frac {x}{\sqrt {b x^3+a x}}dx}{5 b}\)

\(\Big \downarrow \) 1938

\(\displaystyle \frac {2 x \sqrt {a x+b x^3}}{5 b}-\frac {3 a \sqrt {x} \sqrt {a+b x^2} \int \frac {\sqrt {x}}{\sqrt {b x^2+a}}dx}{5 b \sqrt {a x+b x^3}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 x \sqrt {a x+b x^3}}{5 b}-\frac {6 a \sqrt {x} \sqrt {a+b x^2} \int \frac {x}{\sqrt {b x^2+a}}d\sqrt {x}}{5 b \sqrt {a x+b x^3}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {2 x \sqrt {a x+b x^3}}{5 b}-\frac {6 a \sqrt {x} \sqrt {a+b x^2} \left (\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}-\frac {\sqrt {a} \int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {a} \sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}\right )}{5 b \sqrt {a x+b x^3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 x \sqrt {a x+b x^3}}{5 b}-\frac {6 a \sqrt {x} \sqrt {a+b x^2} \left (\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}\right )}{5 b \sqrt {a x+b x^3}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {2 x \sqrt {a x+b x^3}}{5 b}-\frac {6 a \sqrt {x} \sqrt {a+b x^2} \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}\right )}{5 b \sqrt {a x+b x^3}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {2 x \sqrt {a x+b x^3}}{5 b}-\frac {6 a \sqrt {x} \sqrt {a+b x^2} \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^2}}-\frac {\sqrt {x} \sqrt {a+b x^2}}{\sqrt {a}+\sqrt {b} x}}{\sqrt {b}}\right )}{5 b \sqrt {a x+b x^3}}\)

input
Int[x^3/Sqrt[a*x + b*x^3],x]
 
output
(2*x*Sqrt[a*x + b*x^3])/(5*b) - (6*a*Sqrt[x]*Sqrt[a + b*x^2]*(-((-((Sqrt[x 
]*Sqrt[a + b*x^2])/(Sqrt[a] + Sqrt[b]*x)) + (a^(1/4)*(Sqrt[a] + Sqrt[b]*x) 
*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqr 
t[x])/a^(1/4)], 1/2])/(b^(1/4)*Sqrt[a + b*x^2]))/Sqrt[b]) + (a^(1/4)*(Sqrt 
[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*Arc 
Tan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(2*b^(3/4)*Sqrt[a + b*x^2])))/(5*b*S 
qrt[a*x + b*x^3])
 

3.1.58.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1930
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a*x^j + b*x^n)^(p + 1)/(b*(m + n*p 
+ 1))), x] - Simp[a*c^(n - j)*((m + j*p - n + j + 1)/(b*(m + n*p + 1)))   I 
nt[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, 
x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && Gt 
Q[m + j*p - n + j + 1, 0] && NeQ[m + n*p + 1, 0]
 

rule 1938
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^IntPart[m]*(c*x)^FracPart[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(F 
racPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]))   Int[x^(m + j* 
p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !Inte 
gerQ[p] && NeQ[n, j] && PosQ[n - j]
 
3.1.58.4 Maple [A] (verified)

Time = 2.27 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.69

method result size
default \(\frac {2 x \sqrt {b \,x^{3}+a x}}{5 b}-\frac {3 a \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{5 b^{2} \sqrt {b \,x^{3}+a x}}\) \(178\)
elliptic \(\frac {2 x \sqrt {b \,x^{3}+a x}}{5 b}-\frac {3 a \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{5 b^{2} \sqrt {b \,x^{3}+a x}}\) \(178\)
risch \(\frac {2 x^{2} \left (b \,x^{2}+a \right )}{5 b \sqrt {x \left (b \,x^{2}+a \right )}}-\frac {3 a \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{5 b^{2} \sqrt {b \,x^{3}+a x}}\) \(187\)

input
int(x^3/(b*x^3+a*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/5*x*(b*x^3+a*x)^(1/2)/b-3/5*a/b^2*(-a*b)^(1/2)*((x+(-a*b)^(1/2)/b)/(-a*b 
)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-x/(-a*b)^( 
1/2)*b)^(1/2)/(b*x^3+a*x)^(1/2)*(-2*(-a*b)^(1/2)/b*EllipticE(((x+(-a*b)^(1 
/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))+(-a*b)^(1/2)/b*EllipticF(((x+(-a 
*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2)))
 
3.1.58.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.17 \[ \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx=\frac {2 \, {\left (\sqrt {b x^{3} + a x} b x + 3 \, a \sqrt {b} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right )\right )}}{5 \, b^{2}} \]

input
integrate(x^3/(b*x^3+a*x)^(1/2),x, algorithm="fricas")
 
output
2/5*(sqrt(b*x^3 + a*x)*b*x + 3*a*sqrt(b)*weierstrassZeta(-4*a/b, 0, weiers 
trassPInverse(-4*a/b, 0, x)))/b^2
 
3.1.58.6 Sympy [F]

\[ \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx=\int \frac {x^{3}}{\sqrt {x \left (a + b x^{2}\right )}}\, dx \]

input
integrate(x**3/(b*x**3+a*x)**(1/2),x)
 
output
Integral(x**3/sqrt(x*(a + b*x**2)), x)
 
3.1.58.7 Maxima [F]

\[ \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx=\int { \frac {x^{3}}{\sqrt {b x^{3} + a x}} \,d x } \]

input
integrate(x^3/(b*x^3+a*x)^(1/2),x, algorithm="maxima")
 
output
integrate(x^3/sqrt(b*x^3 + a*x), x)
 
3.1.58.8 Giac [F]

\[ \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx=\int { \frac {x^{3}}{\sqrt {b x^{3} + a x}} \,d x } \]

input
integrate(x^3/(b*x^3+a*x)^(1/2),x, algorithm="giac")
 
output
integrate(x^3/sqrt(b*x^3 + a*x), x)
 
3.1.58.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx=\int \frac {x^3}{\sqrt {b\,x^3+a\,x}} \,d x \]

input
int(x^3/(a*x + b*x^3)^(1/2),x)
 
output
int(x^3/(a*x + b*x^3)^(1/2), x)